论文标题
第二阶和一阶延迟微分方程系统的指数稳定性
Exponential stability for a system of second and first order delay differential equations
论文作者
论文摘要
$ x $和$ u $ -control $$ \ ddot \ ddot {x}(t)+a_1(t)+a_1(t)\ dot {x}(h_1(t))+a_2(t))+a_2(t)x(h_2(t)(h_2(t))+a_3(t)+a_3(t) $ \ dot {u}(t)+b_1(t)u(g_1(t))+b_2(t)x(g_2(t))= 0 $ unction $ u $与解决方案。明确的足够条件可以保证$ x $和$ u $ n衰减。
Exponential stability of the second order linear delay differential equation in $x$ and $u$-control $$ \ddot{x}(t)+a_1(t)\dot{x}(h_1(t))+a_2(t)x(h_2(t))+a_3(t)u(h_3(t))=0 $$ is studied, where indirect feedback control $\dot{u}(t)+b_1(t)u(g_1(t))+b_2(t)x(g_2(t))=0$ connects $u$ with the solution. Explicit sufficient conditions guarantee that both $x$ and $u$ decay exponentially.