论文标题

COVID-19从胸部X射线成像检测的机器学习方法:系统评价

Machine learning approaches for COVID-19 detection from chest X-ray imaging: A Systematic Review

论文作者

Arteaga-Arteaga, Harold Brayan, delaPava, Melissa, Mora-Rubio, Alejandro, Bravo-Ortíz, Mario Alejandro, Alzate-Grisales, Jesus Alejandro, Arias-Garzón, Daniel, López-Murillo, Luis Humberto, Buitrago-Carmona, Felipe, Villa-Pulgarín, Juan Pablo, Mercado-Ruiz, Esteban, Orozco-Arias, Simon, Hassaballah, M., de la Iglesia-Vaya, Maria, Cardona-Morales, Oscar, Tabares-Soto, Reinel

论文摘要

有必要开发负担得起且可靠的诊断工具,该工具允许包含COVID-19的扩散。已经提出了机器学习(ML)算法来设计支持决策系统以评估胸部X射线图像,事实证明,这些图像可用于检测和评估疾病进展。许多研究文章围绕此主题发表,这使得很难确定未来工作的最佳方法。本文介绍了使用胸部X射线图像应用于COVID-19检测的ML的系统综述,旨在就方法,体系结构,数据库和当前局限性为研究人员提供基线。

There is a necessity to develop affordable, and reliable diagnostic tools, which allow containing the COVID-19 spreading. Machine Learning (ML) algorithms have been proposed to design support decision-making systems to assess chest X-ray images, which have proven to be useful to detect and evaluate disease progression. Many research articles are published around this subject, which makes it difficult to identify the best approaches for future work. This paper presents a systematic review of ML applied to COVID-19 detection using chest X-ray images, aiming to offer a baseline for researchers in terms of methods, architectures, databases, and current limitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源