论文标题
软罩:图形神经网络的自适应子结构提取
Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks
论文作者
论文摘要
对于学习图表表示,并非图中的所有详细结构都与给定的图形任务相关。与任务相关的结构可以是$本地化的$或$稀疏$,仅参与子图或以子图的交互为特征(层次结构的角度)。图神经网络应该能够有效提取与任务相关的结构并与无关的部分不变,这对于传递传递GNN的一般消息具有挑战性。在这项工作中,我们建议从原始图的一系列子图中学习图表表示,以更好地捕获与任务相关的子结构或分层结构,并跳过$ noisy $零件。为此,我们设计了软遮罩GNN层,以通过掩模机制提取所需的子图。软遮罩是在连续空间中定义的,以维持不同部分的重量并表征不同部分的权重。与现有的子图或分层表示方法和图形合并操作相比,软掩模GNN层不受固定样本或降低比率的限制,因此更灵活地提取具有任意尺寸的子图。公共图基准测试的广泛实验表明,软罩机制可以提高性能。它还提供了可解释性,使每个层中掩码的值可视化可以让我们深入了解模型所学的结构。
For learning graph representations, not all detailed structures within a graph are relevant to the given graph tasks. Task-relevant structures can be $localized$ or $sparse$ which are only involved in subgraphs or characterized by the interactions of subgraphs (a hierarchical perspective). A graph neural network should be able to efficiently extract task-relevant structures and be invariant to irrelevant parts, which is challenging for general message passing GNNs. In this work, we propose to learn graph representations from a sequence of subgraphs of the original graph to better capture task-relevant substructures or hierarchical structures and skip $noisy$ parts. To this end, we design soft-mask GNN layer to extract desired subgraphs through the mask mechanism. The soft-mask is defined in a continuous space to maintain the differentiability and characterize the weights of different parts. Compared with existing subgraph or hierarchical representation learning methods and graph pooling operations, the soft-mask GNN layer is not limited by the fixed sample or drop ratio, and therefore is more flexible to extract subgraphs with arbitrary sizes. Extensive experiments on public graph benchmarks show that soft-mask mechanism brings performance improvements. And it also provides interpretability where visualizing the values of masks in each layer allows us to have an insight into the structures learned by the model.