论文标题

突变模型:通过模仿进化来学习产生水平

Mutation Models: Learning to Generate Levels by Imitating Evolution

论文作者

Khalifa, Ahmed, Green, Michael Cerny, Togelius, Julian

论文摘要

基于搜索的程序内容生成(PCG)是一种用于游戏水平生成的众所周知的方法。它的关键优势是它是通用且能够满足功能约束的能力。但是,由于在线运行这些算法的大量计算成本,因此很少将基于搜索的PCG用于实时生成。在本文中,我们介绍了突变模型,这是一种基于机器学习的新型迭代级别生成器。我们训练模型以模仿进化过程,并使用训练有素的模型生成水平。该训练有素的模型能够依次修改嘈杂级别,以创建更好的水平,而无需在推理过程中使用健身函数。我们在2D迷宫生成任务上评估了训练有素的模型。我们比较了该方法的几个不同版本:在进化结束时(正常进化)或每100代(辅助进化)训练模型,并在进化过程中使用模型作为突变函数。使用辅助进化过程,最终训练的模型能够以99%的成功率产生迷宫,高度多样性为86%。训练有素的模型比训练的进化过程要快。这项工作为以进化过程为指导的一种新的学习水平生成器打开了大门,这意味着具有可自动创建具有特定约束和目标的生成器,这些生成器足以快速地用于游戏中的运行时部署。

Search-based procedural content generation (PCG) is a well-known method for level generation in games. Its key advantage is that it is generic and able to satisfy functional constraints. However, due to the heavy computational costs to run these algorithms online, search-based PCG is rarely utilized for real-time generation. In this paper, we introduce mutation models, a new type of iterative level generator based on machine learning. We train a model to imitate the evolutionary process and use the trained model to generate levels. This trained model is able to modify noisy levels sequentially to create better levels without the need for a fitness function during inference. We evaluate our trained models on a 2D maze generation task. We compare several different versions of the method: training the models either at the end of evolution (normal evolution) or every 100 generations (assisted evolution) and using the model as a mutation function during evolution. Using the assisted evolution process, the final trained models are able to generate mazes with a success rate of 99% and high diversity of 86%. The trained model is many times faster than the evolutionary process it was trained on. This work opens the door to a new way of learning level generators guided by an evolutionary process, meaning automatic creation of generators with specifiable constraints and objectives that are fast enough for runtime deployment in games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源