论文标题
基于分层条件分层自动编码器的声学异常检测
Hierarchical Conditional Variational Autoencoder Based Acoustic Anomaly Detection
论文作者
论文摘要
本文旨在开发一种基于声学信号的无监督异常检测方法来自动机器监测。现有的方法,例如深度自动编码器(DAE),变异自动编码器(VAE),条件变异自动编码器(CVAE)等在潜在空间中的表示功能有限,因此差异异常检测性能差。必须为每种不同类型的机器培训不同的模型,以准确执行异常检测任务。为了解决此问题,我们提出了一种新方法,称为层次条件变化自动编码器(HCVAE)。此方法利用有关工业设施的可用分类学等级知识来完善潜在空间表示。这些知识也有助于改善异常检测性能。我们通过使用适当的条件证明了单个HCVAE模型对不同类型机器的概括能力。此外,为了显示所提出的方法的实用性,(i)我们评估了对不同领域的HCVAE模型,(ii)我们检查了部分分层知识的效果。我们的结果表明,HCVAE方法验证了这两个点,并且在AUC分数度量方面,它最大的15%在异常检测任务上的基线系统的表现优于基线系统。
This paper aims to develop an acoustic signal-based unsupervised anomaly detection method for automatic machine monitoring. Existing approaches such as deep autoencoder (DAE), variational autoencoder (VAE), conditional variational autoencoder (CVAE) etc. have limited representation capabilities in the latent space and, hence, poor anomaly detection performance. Different models have to be trained for each different kind of machines to accurately perform the anomaly detection task. To solve this issue, we propose a new method named as hierarchical conditional variational autoencoder (HCVAE). This method utilizes available taxonomic hierarchical knowledge about industrial facility to refine the latent space representation. This knowledge helps model to improve the anomaly detection performance as well. We demonstrated the generalization capability of a single HCVAE model for different types of machines by using appropriate conditions. Additionally, to show the practicability of the proposed approach, (i) we evaluated HCVAE model on different domain and (ii) we checked the effect of partial hierarchical knowledge. Our results show that HCVAE method validates both of these points, and it outperforms the baseline system on anomaly detection task by utmost 15 % on the AUC score metric.