论文标题
可重新配置的智能表面辅助6G大量访问:耦合张量建模和稀疏的贝叶斯学习
Reconfigurable Intelligent Surface-Aided 6G Massive Access: Coupled Tensor Modeling and Sparse Bayesian Learning
论文作者
论文摘要
本文研究了具有大量零星交通设备的第六代无线网络(6G)无线网络的可重构智能表面(RIS)无源随机访问(URA)方案。首先,本文提出了一种新型的关节主动设备分离(主动设备的消息恢复)和RIS辅助URA的通道估计结构。具体而言,在成功的设备分离之前,对RIS被动反射进行了优化。然后,通过将数据序列与多个排名一张量相关联并利用RIS-BS通道的角度稀疏性,检测问题被施放为高阶耦合张量分解问题,而无需利用试验序列。但是,多个稀疏设备 - 频道之间的固有耦合以及未知数的活动设备的数量使手动检测问题偏离了广泛使用的耦合张量分解格式。为了克服这一挑战,本文明智地设计了一个概率模型,该模型既捕获了角度通道模型的元素稀疏性,又捕获了由于URA的零星性质而引起的低级属性。然后,基于这样的概率模型,在稀疏变异推理的框架下开发了一种迭代检测算法,其中每次更新迭代均以封闭形式获得,并且可以自动估算有效的活动设备的数量,以有效避免噪声过度贴合。广泛的仿真结果证实了拟议的URA算法的卓越性,尤其是对于大量反映元素来容纳大量设备的情况。
This paper investigates a reconfigurable intelligent surface (RIS)-aided unsourced random access (URA) scheme for the sixth-generation (6G) wireless networks with massive sporadic traffic devices. First of all, this paper proposes a novel joint active device separation (the message recovery of active device) and channel estimation architecture for the RIS-aided URA. Specifically, the RIS passive reflection is optimized before the successful device separation. Then, by associating the data sequences to multiple rank-one tensors and exploiting the angular sparsity of the RIS-BS channel, the detection problem is cast as a high-order coupled tensor decomposition problem without the need of exploiting pilot sequences. However, the inherent coupling among multiple sparse device-RIS channels, together with the unknown number of active devices make the detection problem at hand deviate from the widely-used coupled tensor decomposition format. To overcome this challenge, this paper judiciously devises a probabilistic model that captures both the element-wise sparsity from the angular channel model and the low-rank property due to the sporadic nature of URA. Then, based on such a probabilistic model, a iterative detection algorithm is developed under the framework of sparse variational inference, where each update iteration is obtained in a closed-form and the number of active devices can be automatically estimated for effectively avoiding the overfitting of noise. Extensive simulation results confirm the excellence of the proposed URA algorithm, especially for the case of a large number of reflecting elements for accommodating a significantly large number of devices.