论文标题
扭曲的铁纳米复合材料中的巨型形状内存效应
Giant shape-memory effect in twisted ferroic nanocomposites
论文作者
论文摘要
形状内存合金的形状恢复能力在临界尺寸(〜50nm)以下消失,从而阻止了它们在纳米级的实际应用。相比之下,即使在少数纳米的尺寸缩放到尺寸时,铁四材料也会通过域切换表现出致动菌株,尽管产生的应变是适度的(〜1%)。在这里,我们开发了纳米级铁氧化物的独立式扭曲体系结构,表现出巨大的可回收应变(> 10%)的形状内存效应。扭曲的几何设计放大了铁电域切换过程中产生的应变,这是在散装陶瓷或底物键入薄膜中无法实现的。扭曲的铁元素纳米复合材料使我们能够克服传统的形状内存合金中的尺寸限制,并在工程大幅冲程的形状内存材料中开放了新的途径,用于用于小规模致动设备,例如纳米机器人和人造肌肉纤维。
The shape recovery ability of shape-memory alloys vanishes below a critical size (~50nm), which prevents their practical applications at the nanoscale. In contrast, ferroic materials, even when scaled down to dimensions of a few nanometers, exhibit actuation strain through domain switching, though the generated strain is modest (~1%). Here, we develop free-standing twisted architectures of nanoscale ferroic oxides showing shape-memory effect with a giant recoverable strain (>10%). The twisted geometrical design amplifies the strain generated during ferroelectric domain switching, which cannot be achieved in bulk ceramics or substrate-bonded thin films. The twisted ferroic nanocomposites allow us to overcome the size limitations in traditional shape-memory alloys and opens new avenues in engineering large-stroke shape-memory materials for small-scale actuating devices such as nanorobots and artificial muscle fibrils.