论文标题
3- $(α,δ)$ - sasaki歧管的曲率特性
Curvature Properties of 3-$(α,δ)$-Sasaki Manifolds
论文作者
论文摘要
我们研究了3- $(α,δ)$ -Sasaki流形的曲率特性,这是一类近3个接触度量的特殊类别,概括了3 sasaki歧管(对应于$α=δ= 1 $),该类别承认与偏差的统一范围散发出了范围的范围,并散发出了范围的范围。曲率,根据$δ= 0 $,$αδ> 0 $或$αδ<0 $。我们将研究riemannian曲率和规范连接的曲率,特别关注其曲率算子,被视为两种形式空间的对称内态性。我们描述了它们的频谱,找到了杰出的特征形式,并研究了索普(Thorpe)意义上强烈确定的曲率条件。
We investigate curvature properties of 3-$(α,δ)$-Sasaki manifolds, a special class of almost 3-contact metric manifolds generalizing 3-Sasaki manifolds (corresponding to $α= δ= 1$) that admit a canonical metric connection with skew torsion and define a Riemannian submersion over a quaternionic Kähler manifold with vanishing, positive or negative scalar curvature, according to $δ= 0$, $αδ> 0$ or $αδ< 0$. We shall investigate both the Riemannian curvature and the curvature of the canonical connection, with particular focus on their curvature operators, regarded as symmetric endomorphisms of the space of 2-forms. We describe their spectrum, find distinguished eigenforms, and study the conditions of strongly definite curvature in the sense of Thorpe.