论文标题
爱因斯坦四人群的凯勒斯
Kählerity of Einstein four-manifolds
论文作者
论文摘要
我们证明,面向封闭的爱因斯坦四个manifold是反对偶尔的,或者(如有必要,在经过双重riemann封面之后)Kähler-enstein,但前提是$λ_2\ geq- \ geq- \ frac {s} {s} {12} {12} $曲率。对于$ΔW^+= 0 $的封闭方向的四个manifolds,同样的结论也具有相同的结论。
We prove that a closed oriented Einstein four-manifold is either anti-self-dual or (after passing to a double Riemann cover if necessary) Kähler-Einstein, provided that $λ_2 \geq -\frac{S}{12}$, where $λ_2$ is the middle eigenvalue of the self-dual Weyl tensor $W^+$ and $S$ is the scalar curvature. The same conclusion holds for closed oriented four-manifolds with $δW^+=0$.