论文标题

图和矩阵空间之间的连接

Connections between graphs and matrix spaces

论文作者

Li, Yinan, Qiao, Youming, Wigderson, Avi, Wigderson, Yuval, Zhang, Chuanqi

论文摘要

给定双分图$ g $,图形矩阵空间$ \ mathcal {s} _g $由矩阵组成,其非零条目只能位于与$ g $中边缘相对应的那些位置。 Tutte(J. LondonMath。Soc。,1947年),Edmonds(J.Res。Nat。Bur。Andardssect。B,1967年)和Lovász(FCT,1979年)观察到$ G $中的完美匹配与$ G $中的完美匹配与$ \ $ \ Mathcal {S} _G $的完美匹配。 Dieudonné({Arch。Math。,1948)在那些仅包含单数矩阵的矩阵空间的尺寸上证明了一个紧密的上限。本文的起点是对这两个经典结果的同时概括:我们表明,仅包含单个矩阵的$ \ nathcal {s} _g $的子空间的最大维度等于$ g $的最大尺寸,而不是$ g $的最大尺寸,而没有完美的匹配,基于Meshulam的dieududonnne dioudodonnul的证明(quart。 从这个结果开始,我们继续建立图形和矩阵空间属性之间的更多连接。例如,我们建立了循环和尼尔德,强连通性和不可还原性之间以及同构和共轭/一致性之间的连接。对于每种连接,我们研究了三种类型的对应关系,即基本对应关系,遗传的对应关系(对于子图和子空间)以及诱导的对应关系(对于诱导的子图和限制)。一些对应关系导致了古典结果的有趣概括,例如上述迪多恩纳的结果,以及关于格斯坦霍格的著名定理,内容涉及零矩阵空间的最大维度(Amer。J.Math。,1958)。 最后,我们展示了结果对量子信息的一些含义,并提出了这些结果促进的计算复杂性中的开放问题。

Given a bipartite graph $G$, the graphical matrix space $\mathcal{S}_G$ consists of matrices whose non-zero entries can only be at those positions corresponding to edges in $G$. Tutte (J. London Math. Soc., 1947), Edmonds (J. Res. Nat. Bur. Standards Sect. B, 1967) and Lovász (FCT, 1979) observed connections between perfect matchings in $G$ and full-rank matrices in $\mathcal{S}_G$. Dieudonné ({Arch. Math., 1948) proved a tight upper bound on the dimensions of those matrix spaces containing only singular matrices. The starting point of this paper is a simultaneous generalization of these two classical results: we show that the largest dimension over subspaces of $\mathcal{S}_G$ containing only singular matrices is equal to the maximum size over subgraphs of $G$ without perfect matchings, based on Meshulam's proof of Dieudonné's result (Quart. J. Math., 1985). Starting from this result, we go on to establish more connections between properties of graphs and matrix spaces. For example, we establish connections between acyclicity and nilpotency, between strong connectivity and irreducibility, and between isomorphism and conjugacy/congruence. For each connection, we study three types of correspondences, namely the basic correspondence, the inherited correspondence (for subgraphs and subspaces), and the induced correspondence (for induced subgraphs and restrictions). Some correspondences lead to intriguing generalizations of classical results, such as for Dieudonné's result mentioned above, and for a celebrated theorem of Gerstenhaber regarding the largest dimension of nil matrix spaces (Amer. J. Math., 1958). Finally, we show some implications of our results to quantum information and present open problems in computational complexity motivated by these results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源