论文标题

AI的新领域:设备AI培训和个性化

A New Frontier of AI: On-Device AI Training and Personalization

论文作者

Moon, Ji Joong, Lee, Hyun Suk, Chu, Jiho, Park, Donghak, Hong, Seungbaek, Seo, Hyungjun, Jeong, Donghyeon, Kong, Sungsik, Ham, MyungJoo

论文摘要

现代的消费电子设备已经开始在设备而不是云服务器上执行基于深度学习的情报服务,以将个人数据保留在设备上并降低网络和云成本。我们发现了通过使用用户数据更新神经网络的情况,而无需将数据暴露在设备中:在设备培训中,就可以通过用户数据来个性化智能服务。但是,设备的有限资源带来了很大的困难。我们提出了一个轻巧的装置培训框架NNTrainer,该框架提供了基于神经网络的细粒度执行订单分析,提供了高度的记忆有效的神经网络训练技术和主动交换。此外,它的优化不能牺牲准确性,并且对培训算法是透明的。因此,可以在NNTrainer的顶部实施先前的算法研究。评估表明,NNTrainer可以将内存消耗降低至1/20(节省95%!),并有效地个性化设备上的智能服务。 NNTrainer是跨平台和实用的开源软件,该软件正在部署到数百万个移动设备上。

Modern consumer electronic devices have started executing deep learning-based intelligence services on devices, not cloud servers, to keep personal data on devices and to reduce network and cloud costs. We find such a trend as the opportunity to personalize intelligence services by updating neural networks with user data without exposing the data out of devices: on-device training. However, the limited resources of devices incurs significant difficulties. We propose a light-weight on-device training framework, NNTrainer, which provides highly memory-efficient neural network training techniques and proactive swapping based on fine-grained execution order analysis for neural networks. Moreover, its optimizations do not sacrifice accuracy and are transparent to training algorithms; thus, prior algorithmic studies may be implemented on top of NNTrainer. The evaluations show that NNTrainer can reduce memory consumption down to 1/20 (saving 95%!) and effectively personalizes intelligence services on devices. NNTrainer is cross-platform and practical open-source software, which is being deployed to millions of mobile devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源