论文标题
绞线烤宽面条模块和处理分解
Skein lasagna modules and handle decompositions
论文作者
论文摘要
岩石宽面条模块是Khovanov-Rozansky同源性与四个manifold的设置和边界上的链接的扩展。这种不变的扮演着相关的完全扩展(4+epsilon)维tqft的希尔伯特空间的作用。我们给出了一般的程序,以四个manifold的手柄分解来表达千层面部的宽面条模块。我们使用它来计算一些示例,并表明千层宽面条模块有时可以是局部无限的尺寸。
The skein lasagna module is an extension of Khovanov-Rozansky homology to the setting of a four-manifold and a link in its boundary. This invariant plays the role of the Hilbert space of an associated fully extended (4+epsilon)-dimensional TQFT. We give a general procedure for expressing the skein lasagna module in terms of a handle decomposition for the four-manifold. We use this to calculate a few examples, and show that the skein lasagna module can sometimes be locally infinite dimensional.