论文标题
量子机电中的热诱导的量子
Thermally-induced qubit coherence in quantum electromechanics
论文作者
论文摘要
量子相干性是量子系统处于正交量子状态的叠加中的能力,是量子力学的独特特征,因此标志着与经典物理学的偏差。连贯性发现其在量子传感和计量,量子热力学和计算中的应用。一个特别有趣的是,有可能从没有实施涉及相干驱动序列的复杂协议的热能中观察到以违反直觉的方式产生的连贯性。在此手稿中,我们研究了由两级系统(QUBIT)和热量子谐波振荡器(一种材料机械振荡器)组成的混合系统中出现的量子相干性,这是受此类系统制造的最新实验进展的启发。我们表明,量子相干性是在这种复合系统中创建的,这仅是由于零件的相互作用和相关阻尼下持续存在的。这种方案的实施将证明先前未观察到的相干产生机制,并且对与机械振荡器和Qubits的混合量子技术有益。
Quantum coherence, the ability of a quantum system to be in a superposition of orthogonal quantum states, is a distinct feature of the quantum mechanics, thus marking a deviation from classical physics. Coherence finds its applications in quantum sensing and metrology, quantum thermodynamics and computation. A particularly interesting is the possibility to observe coherence arising in counter-intuitive way from thermal energy that is without implementation of intricate protocols involving coherent driving sequences. In this manuscript, we investigate quantum coherence emerging in a hybrid system composed of a two-level system (qubit) and a thermal quantum harmonic oscillator (a material mechanical oscillator), inspired by recent experimental progress in fabrication of such systems. We show that quantum coherence is created in such a composite system solely from the interaction of the parts and persists under relevant damping. Implementation of such scheme will demonstrate previously unobserved mechanisms of coherence generation and can be beneficial for hybrid quantum technologies with mechanical oscillators and qubits.