论文标题

多个实例学习数字病理学:有关最新的局限性,限制和未来潜力的评论

Multiple Instance Learning for Digital Pathology: A Review on the State-of-the-Art, Limitations & Future Potential

论文作者

Gadermayr, Michael, Tschuchnig, Maximilian

论文摘要

数字整体幻灯片图像包含大量信息,为开发自动图像分析工具提供了强大的动力。在数字病理领域的各种任务方面,特别深度的神经网络具有很高的潜力。但是,典型的深度学习算法除了大量图像数据之外还需要(手动)注释以实现有效的培训。多个实例学习在没有完全注释的数据的情况下展示了一个有力的工具,可在情况下学习深层神经网络。这些方法在该域中特别有效,因为通常通常会捕获完整的整个幻灯片图像的标签,而用于贴片,区域或像素的标签不是。这种潜力已经导致了大量出版物,并且在过去三年中发表了多数。除了从医学的角度使用数据的可用性和高度动机外,强大的图形处理单元的可用性在该领域还具有加速器。在本文中,我们概述了广泛,有效地使用了使用的深层实例学习方法,最新进展以及批判性地讨论剩余挑战和未来潜力的概念。

Digital whole slides images contain an enormous amount of information providing a strong motivation for the development of automated image analysis tools. Particularly deep neural networks show high potential with respect to various tasks in the field of digital pathology. However, a limitation is given by the fact that typical deep learning algorithms require (manual) annotations in addition to the large amounts of image data, to enable effective training. Multiple instance learning exhibits a powerful tool for learning deep neural networks in a scenario without fully annotated data. These methods are particularly effective in this domain, due to the fact that labels for a complete whole slide image are often captured routinely, whereas labels for patches, regions or pixels are not. This potential already resulted in a considerable number of publications, with the majority published in the last three years. Besides the availability of data and a high motivation from the medical perspective, the availability of powerful graphics processing units exhibits an accelerator in this field. In this paper, we provide an overview of widely and effectively used concepts of used deep multiple instance learning approaches, recent advances and also critically discuss remaining challenges and future potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源