论文标题

将分离性非负矩阵分解应用于金融数据

Applying separative non-negative matrix factorization to extra-financial data

论文作者

Fogel, P, Geissler, C, Cotte, P, Luta, G

论文摘要

我们在这里介绍了非负矩阵分解(NMF)方法的原始应用,以实现金融大数据。这些数据在共同变量之间以及观察结果之间存在很高的相关性。与简单的主成分分析(PCA)相比,NMF提供了共同变量和观察的相关聚类。此外,我们表明,在应用NMF之前,初始数据分离步骤进一步提高了聚类的质量。

We present here an original application of the non-negative matrix factorization (NMF) method, for the case of extra-financial data. These data are subject to high correlations between co-variables, as well as between observations. NMF provides a much more relevant clustering of co-variables and observations than a simple principal component analysis (PCA). In addition, we show that an initial data separation step before applying NMF further improves the quality of the clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源