论文标题

可以:或递归多项式回归进行在线信号分析的泄漏的集成器

The leaky integrator that could: Or recursive polynomial regression for online signal analysis

论文作者

Kennedy, Hugh L

论文摘要

将局部多项式模型拟合到既有样本的观测值或测量值(即回归)的嘈杂序列,可以最大程度地减少加权平方误差的总和(即残差)的总和,以设计数字过滤器,以针对各种信号问题(例如检测,分类和跟踪),以实例为实例,以实例为实例,以实例为实例,在生物范围内进行生物范围,并实现生物范围,并进行生物范围。此外,使用所谓的泄漏集成商网络对此类过滤器的递归实现产生了具有较低计算复杂性和无限脉冲响应(IIR)的简单数字组件,这些组件在具有较高数据速率的嵌入式在线传感系统中是理想的。在本教程中将目标跟踪,脉冲边缘检测,峰值检测和异常/变化检测视为说明性示例。 ERLANG加权多项式回归提供了一个设计框架,其中各种设计估计器的设计权衡(例如,偏差错误与随机错误)和IIR SmoOther(例如,频率隔离与时间定位)可以直观地平衡。 Erlang权重配置使用平滑参数,该参数决定了指数尾巴的衰减速率;形状参数可用于打折更多最新的数据,因此将相对重点更大的重点放在过去的时间间隔上。在莫里森(Morrison)关于顺序平滑和预测的1969年论文中,详细描述了相对于此重量的正交的指数重量(即零形状参数案例)和laguerre多项式。但是,更一般的Erlang重量和所得相关的Laguerre多项式没有考虑,此后在其他地方也没有详细介绍它们。因此,本教程的目的之一是解释如何使用Erlang权重来塑造和改善递归回归过滤器的响应。

Fitting a local polynomial model to a noisy sequence of uniformly sampled observations or measurements (i.e. regressing) by minimizing the sum of weighted squared errors (i.e. residuals) may be used to design digital filters for a diverse range of signal-analysis problems, such as detection, classification and tracking, in biomedical, financial, and aerospace applications, for instance. Furthermore, the recursive realization of such filters, using a network of so-called leaky integrators, yields simple digital components with a low computational complexity and an infinite impulse response (IIR) that are ideal in embedded online sensing systems with high data rates. Target tracking, pulse-edge detection, peak detection and anomaly/change detection are considered in this tutorial as illustrative examples. Erlang-weighted polynomial regression provides a design framework within which the various design trade-offs of state estimators (e.g. bias errors vs. random errors) and IIR smoothers (e.g. frequency isolation vs. time localization) may be intuitively balanced. Erlang weights are configured using a smoothing parameter which determines the decay rate of the exponential tail; and a shape parameter which may be used to discount more recent data, so that a greater relative emphasis is placed on a past time interval. In Morrison's 1969 treatise on sequential smoothing and prediction, the exponential weight (i.e. the zero shape-parameter case) and the Laguerre polynomials that are orthogonal with respect to this weight, are described in detail; however, more general Erlang weights and the resulting associated Laguerre polynomials are not considered there, nor have they been covered in detail elsewhere since. Thus, one of the purposes of this tutorial is to explain how Erlang weights may be used to shape and improve the response of recursive regression filters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源