论文标题

各向异性和多型多孔培养基中弹性动力方程的表述

Formulations of the Elastodynamic Equations in Anisotropic and Multiphasic Porous Media from the Principle of Energy Conservation

论文作者

Zhou, Yinqiu, Zhang, Xiumei, Liu, Lin, Liu, Tingting, Wang, Xiuming

论文摘要

弹性动力方程是通过牛顿的第二项运动定律,拉格朗日方程定律或汉密尔顿的原则制定的,已有150多年的历史。在这项工作中,与经典的连续性力学相反,提出了一种新型的战略方法,用于使用节能原理制定一般的机械方程。首先,基于汉密尔顿的原理,汉密尔顿的方程,拉格朗日的方程和运动的弹性动力方程是在任意各向异性和多型多孔弹性介质中得出的。其次,这些方程都是使用相关介质的能源保护原理制定的。使用两种原理的两种公式结果彼此进行比较和验证。我们方法论的优点在于,连续力学中运动的弹性动力方程,拉格朗日方程和汉密尔顿方程是直接使用能源保存的简单约束而不引入变分概念的。这很容易理解,并且具有明显的身体含义。我们的方法论释放了汉密尔顿在连续力学中原理的物理学本质,这是节能原则的结果。尽管考虑了线性应力 - 应变的组成关系,但我们的方法仍然可以用于非线性动力学系统。该方法还铺平了一种在广义上处理其他复杂连续动力系统的另一种方法。此外,作为应用程序,还使用我们提出的方法对各种介质接口处的连续性条件进行了重新访问和扩展,这解释了反射和折射定律。

Elastodynamic equations have been formulated with either Newton's second law of motion, Lagrange's equation, or Hamilton's principle for over 150 years. In this work, contrary to classical continuum mechanics, a novel strategic methodology is proposed for formulating general mechanical equations using the principle of energy conservation. Firstly, based on Hamilton's principle, Hamilton's equations, Lagrange's equation, and the elastodynamic equation of motion are derived in arbitrarily anisotropic and multiphasic porous elastic media, for the first time. Secondly, these equations are all formulated using the principle of energy conservation for the related media. Both formulation results using the two kinds of principles are compared and validated by each other. The advantages of our methodology lie in that, the elastodynamic equation of motion, Lagrange's equation, and Hamilton's equations in continuum mechanics are directly formulated using a simple constraint of energy conservation without introducing variational concepts. It is easy to understand and has clear physical meanings. Our methodology unlocks the physics essences of Hamilton's principle in continuum mechanics, which is a consequence of the principle of energy conservation. Although the linear stress-strain constitutive relation is considered, our methodology can still be used in a nonlinear dynamical system. The methodology also paves an alternative way of treating other complex continuous dynamical systems in a broad sense. In addition, as an application, the continuity conditions at various medium interfaces are also revisited and extended using our proposed approach, which explains the law of reflections and refractions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源