论文标题

开普勒要的二进制文件的特征表现出明显的O'Connell效果

Characteristics of Kepler Eclipsing Binaries Displaying a Significant O'Connell Effect

论文作者

Knote, Matthew F., Caballero-Nieves, Saida M., Gokhale, Vayujeet, Johnston, Kyle B., Perlman, Eric S.

论文摘要

O'Connell效应 - 在黯然失色的二进制文件中存在不平等的最大值 - 在近距离二元系统的研究中仍然是未解决的谜语。开普勒空间望远镜产生了近3,000个黯然失色的二元系统的高精度光度法,这为研究O'Connell效应提供了一个独特的机会,比以前的研究更详细地研究了O'Connell效应。我们已经表征了一组212个系统的观察性能(包括温度,光度和日食深度)(7.3%的开普勒剥落二进制文件),这些系统显示最大值差异至少为1%,代表了尚未研究的O'Connell效应系统的最大样本。我们探讨了这些特征如何相互关联,以帮助了解O'Connell效应的根本原因。我们还描述了一些具有特殊光曲线特征的系统类,除了O'Connell效应(占样本的30%),包括时间变化和不对称的最小值。我们发现,O'Connell效应的大小与周期和温度的相关性与Kouzuma的Starspot研究不一致。多达20%的系统显示抛物线日食的定时变化信号预期接受传质的二进制文件。大多数显示O'Connell效果的系统在主要日食之后具有更明亮的最大值,这表明最大值与O'Connell Effect的物理原因之间的基本联系。最重要的是,我们发现O'Connell效应仅发生在组件足够接近以相互影响的系统中,这表明组件之间的相互作用最终是造成O'Connell效应的原因。

The O'Connell effect - the presence of unequal maxima in eclipsing binaries - remains an unsolved riddle in the study of close binary systems. The Kepler space telescope produced high precision photometry of nearly 3,000 eclipsing binary systems, providing a unique opportunity to study the O'Connell effect in a large sample and in greater detail than in previous studies. We have characterized the observational properties - including temperature, luminosity, and eclipse depth - of a set of 212 systems (7.3% of Kepler eclipsing binaries) that display a maxima flux difference of at least 1%, representing the largest sample of O'Connell effect systems yet studied. We explored how these characteristics correlate with each other to help understand the O'Connell effect's underlying causes. We also describe some system classes with peculiar light curve features aside from the O'Connell effect (~30% of our sample), including temporal variation and asymmetric minima. We found that the O'Connell effect size's correlations with period and temperature are inconsistent with Kouzuma's starspot study. Up to 20% of systems display the parabolic eclipse timing variation signal expected for binaries undergoing mass transfer. Most systems displaying the O'Connell effect have the brighter maximum following the primary eclipse, suggesting a fundamental link between which maximum is brighter and the O'Connell effect's physical causes. Most importantly, we find that the O'Connell effect occurs exclusively in systems where the components are close enough to significantly affect each other, suggesting that the interaction between the components is ultimately responsible for causing the O'Connell effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源