论文标题

使用Lorentzian纳米颗粒产生热量:通过时域技术估算

Heat Generation using Lorentzian Nanoparticles: Estimation via Time-Domain Techniques

论文作者

Mukherjee, Arpan, Sini, Mourad

论文摘要

我们分析了描述电磁纳米颗粒产生的热量的数学模型。我们使用纳米颗粒的已知光学特性来控制纳米颗粒周围所需的热量的支撑和量。确切地说,我们表明,纳米颗粒周围的热量的主要部分是电场乘以与磁化(或牛顿)操作员的特征值和特征函数相关的持续依赖性,明确的,并且仅根据与纳米机构相关的磁化(或牛顿)操作员的特征值和特征函数相关的,并在nanoparticle上,并在nanoparticle上分配了远距离的距离。 纳米颗粒通过Lorentz模型描述。如果选择了与等离激频频率$ω_p$(通过磁化操作员)相关的频率的频率,则纳米颗粒的表现为等离子,而如果选择与未阻尼的共振频率$ω_0$(通过牛顿操作员)相关的话,则它的作用是介电的。这两个制度表现出不同的光学行为。在这两种情况下,我们都估计了产生的热量并讨论每个入射频率制度的优势。 该分析基于时间域积分方程技术,以避免使用(正式)傅立叶类型转换。

We analyze the mathematical model that describes the heat generated by electromagnetic nanoparticles. We use the known optical properties of the nanoparticles to control the support and amount of the heat needed around a nanoparticle. Precisely, we show that the dominant part of the heat around the nanoparticle is the electric field multiplied by a constant dependent, explicitly and only, on the permittivity and quantities related to the eigenvalues and eigenfunctions of the Magnetization (or the Newtonian) operator, defined on the nanoparticle, and inversely proportional to the distance to the nanoparticle. The nanoparticles are described via the Lorentz model. If the used incident frequency is chosen related to the plasmonic frequency $ω_p$ (via the Magnetization operator) then the nanoparticle behaves as a plasmonic one while if it is chosen related to the undamped resonance frequency $ω_0$ (via the Newtonian operator), then it behaves as a dielectric one. The two regimes exhibit different optical behaviors. In both cases, we estimate the generated heat and discuss advantages of each incident frequency regime. The analysis is based on time-domain integral equation techniques avoiding the use of (formal) Fourier type transformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源