论文标题
神经扩散过程
Neural Diffusion Processes
论文作者
论文摘要
元学习分布的神经网络方法具有理想的特性,例如灵活性提高和推理的复杂性降低。我们提出了神经扩散过程(NDPS)的基础,以降解生成建模的扩散模型的成功,这是一种新颖的方法,该方法可以通过其有限的边缘从功能上进行丰富的分布进行采样。通过引入自定义注意块,我们可以将随机过程的属性(例如交换性)直接合并到NDP的体系结构中。我们从经验上表明,NDP可以捕获靠近真正的贝叶斯后部的功能分布,表明它们可以成功模仿高斯过程的行为并超过神经过程的性能。 NDP启用了各种下游任务,包括回归,隐式高参数边缘化,非高斯后期预测和全局优化。
Neural network approaches for meta-learning distributions over functions have desirable properties such as increased flexibility and a reduced complexity of inference. Building on the successes of denoising diffusion models for generative modelling, we propose Neural Diffusion Processes (NDPs), a novel approach that learns to sample from a rich distribution over functions through its finite marginals. By introducing a custom attention block we are able to incorporate properties of stochastic processes, such as exchangeability, directly into the NDP's architecture. We empirically show that NDPs can capture functional distributions close to the true Bayesian posterior, demonstrating that they can successfully emulate the behaviour of Gaussian processes and surpass the performance of neural processes. NDPs enable a variety of downstream tasks, including regression, implicit hyperparameter marginalisation, non-Gaussian posterior prediction and global optimisation.