论文标题

RGB-D语义分段的深度适应CNN

Depth-Adapted CNNs for RGB-D Semantic Segmentation

论文作者

Wu, Zongwei, Allibert, Guillaume, Stolz, Christophe, Ma, Chao, Demonceaux, Cédric

论文摘要

由于从输入方面互补的方式,RGB-D语义细分引发了研究的兴趣。现有作品通常采用两流体系结构,该架构并联处理光度和几何信息,很少有方法明确利用深度提示的贡献来调整RGB图像上的采样位置。在本文中,我们提出了一个新颖的框架,以将深度信息纳入RGB卷积神经网络(CNN),称为Z-ACN(深度适应的CNN)。具体而言,我们的Z-ACN生成了2D适应的偏移量,该偏移完全受到低级功能的约束,以指导RGB图像上的特征提取。通过生成的偏移,我们引入了两个直观有效的操作,以替换基本的CNN操作员:深度适应的卷积和深度适应的平均池。对室内和室外语义分割任务进行的广泛实验证明了我们方法的有效性。

Recent RGB-D semantic segmentation has motivated research interest thanks to the accessibility of complementary modalities from the input side. Existing works often adopt a two-stream architecture that processes photometric and geometric information in parallel, with few methods explicitly leveraging the contribution of depth cues to adjust the sampling position on RGB images. In this paper, we propose a novel framework to incorporate the depth information in the RGB convolutional neural network (CNN), termed Z-ACN (Depth-Adapted CNN). Specifically, our Z-ACN generates a 2D depth-adapted offset which is fully constrained by low-level features to guide the feature extraction on RGB images. With the generated offset, we introduce two intuitive and effective operations to replace basic CNN operators: depth-adapted convolution and depth-adapted average pooling. Extensive experiments on both indoor and outdoor semantic segmentation tasks demonstrate the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源