论文标题
区域气候模型的时空降压模拟器:比较研究
Spatio-temporal Downscaling Emulator for Regional Climate Models: a Comparative Study
论文作者
论文摘要
区域气候模型(RCM)描述了中等规模的全球大气和海洋动力学,并用作动力学缩减模型。换句话说,RCM使用一般循环模型(GCM)的大气和海洋气候产量来开发更高的分辨率气候产量。它们的计算要求是,取决于应用程序,比统计气候缩减需要几个计算机时间的数量级。在本文中,我们将如何使用不同系数(VC)的时空统计模型(VC)作为使用不同系数的RCM的降压模拟器。为了估算提出的模型,比较了两个选项:inla和varycoef。我们设置了一个模拟,以比较两种方法的性能,用于为RCM构建统计缩减模拟器,然后证明该模拟器适用于NARCCAP数据。结果表明,该模型能够估计非平稳的边缘效应,这意味着降压输出在空间上可能会有所不同。此外,该模型具有灵活性,可以估计空间和时间上任何变量的平均值,并具有良好的预测结果。 INLA是所有情况下最快的方法,并且具有最佳准确性的近似值,以估算模型的不同参数以及响应变量的后验分布。
Regional Climate Models (RCM) describe the meso scale global atmospheric and oceanic dynamics and serve as dynamical downscaling models. In other words, RCMs use atmospheric and oceanic climate output from General Circulation Models (GCM) to develop a higher resolution climate output. They are computationally demanding and, depending on the application, require several orders of magnitude of computer time more than statistical climate downscaling. In this paper we describe how to use a spatio-temporal statistical model with varying coefficients (VC), as a downscaling emulator for a RCM using varying coefficients. In order to estimate the proposed model, two options are compared: INLA, and varycoef. We set up a simulation to compare the performance of both methods for building a statistical downscaling emulator for RCM, and then show that the emulator works properly for NARCCAP data. The results show that the model is able to estimate non-stationary marginal effects, which means that the downscaling output can vary over space. Furthermore, the model has flexibility to estimate the mean of any variable in space and time, and has good prediction results. INLA was the fastest method for all the cases, and the approximation with best accuracy to estimate the different parameters from the model and the posterior distribution of the response variable.