论文标题
PFL板凳:个性化联合学习的全面基准
pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning
论文作者
论文摘要
使用和部署不同本地模型的个性化联合学习(PFL),由于其在处理佛罗里达州客户的统计异质性方面的成功,近年来引起了人们的关注。但是,对不同PFL方法的标准化评估和系统分析仍然是一个挑战。首先,高度多样化的数据集,FL仿真设置和PFL实现可阻止PFL方法的简单和公平比较。其次,当前的PFL文献在采用的评估和消融方案中有所不同。最后,在各种实际情况下,PFL方法的有效性和鲁棒性不足以探索,例如对新客户的概括以及资源有限的客户的参与。为了应对这些挑战,我们提出了第一个全面的PFL基准PFL基准,以促进快速,可重现,标准化和彻底的PFL评估。所提出的基准测试在各种应用程序域中包含10个以上的数据集变体,并具有统一的数据分区和现实的异质设置;具有20多种竞争性PFL方法实现的模块化且易于扩展的PFL代码库;以及在集装环境下进行的系统评估,以泛化,公平性,高架开销和收敛性。我们强调了最先进的PFL方法的好处和潜力,并希望PFL板台可以实现进一步的PFL研究和广泛的应用,而这些应用程序由于缺乏专用基准而难以进行。该代码在https://github.com/alibaba/federatedscope/tree/master/master/benchmark/pfl-bench上发布。
Personalized Federated Learning (pFL), which utilizes and deploys distinct local models, has gained increasing attention in recent years due to its success in handling the statistical heterogeneity of FL clients. However, standardized evaluation and systematical analysis of diverse pFL methods remain a challenge. Firstly, the highly varied datasets, FL simulation settings and pFL implementations prevent easy and fair comparisons of pFL methods. Secondly, the current pFL literature diverges in the adopted evaluation and ablation protocols. Finally, the effectiveness and robustness of pFL methods are under-explored in various practical scenarios, such as the generalization to new clients and the participation of resource-limited clients. To tackle these challenges, we propose the first comprehensive pFL benchmark, pFL-Bench, for facilitating rapid, reproducible, standardized and thorough pFL evaluation. The proposed benchmark contains more than 10 dataset variants in various application domains with a unified data partition and realistic heterogeneous settings; a modularized and easy-to-extend pFL codebase with more than 20 competitive pFL method implementations; and systematic evaluations under containerized environments in terms of generalization, fairness, system overhead, and convergence. We highlight the benefits and potential of state-of-the-art pFL methods and hope the pFL-Bench enables further pFL research and broad applications that would otherwise be difficult owing to the absence of a dedicated benchmark. The code is released at https://github.com/alibaba/FederatedScope/tree/master/benchmark/pFL-Bench.