论文标题

Yang-Mills-higgs在复杂线束上运行:$γ$ - convergence和伦敦方程式

The Yang-Mills-Higgs functional on complex line bundles: $Γ$-convergence and the London equation

论文作者

Canevari, Giacomo, Dipasquale, Federico Luigi, Orlandi, Giandomenico

论文摘要

我们将Abelian Yang-Mills-higgs在非自我双重缩放中的功能上,在封闭的Riemannian dimension $ n \ geq 3 $的封闭的Riemannian歧管上。该功能是金茨堡 - 兰道模型的自然概括,以实现非欧几里得环境的超导性。我们证明,在耦合参数的对数重新缩放的功能上,在强烈排斥的极限中证明了$γ$ - 连接的结果。作为推论,我们证明了最小剂的能量集中在尺寸$ n-2 $的面积最小化表面上,而最小化器的曲率则收敛于伦敦方程的溶液。

We consider the Abelian Yang-Mills-Higgs functional, in the non-self dual scaling, on a complex line bundle over a closed Riemannian manifold of dimension $n\geq 3$. This functional is the natural generalisation of the Ginzburg-Landau model for superconductivity to the non-Euclidean setting. We prove a $Γ$-convergence result, in the strongly repulsive limit, on the functional rescaled by the logarithm of the coupling parameter. As a corollary, we prove that the energy of minimisers concentrates on an area-minimising surface of dimension $n-2$, while the curvature of minimisers converges to a solution of the London equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源