论文标题
关于真实论点的二项式系数
On Binomial coefficients of real arguments
论文作者
论文摘要
众所周知,{\ mathbb r} $ in {\ mathbb r} $的实际数字$ x \的经典概念的概括是Euler的伽马函数$γ(1+x)$的值。在这方面,二项式系数的概念自然出现在真实论点的可接受价值中。 通过基本方式,事实证明,二项式系数的许多属性$ \ binom {r}α$的真实参数$ r,\,α\ in {\ mathbb r} $,例如单模式的类似物,对称性,对称性,帕斯卡尔(Pascal)的triangle,triangle,for Plassical binomial cofferications。建立了这种特殊形式的普遍二项式系数的渐近行为。
As is well-known, a generalization of the classical concept of the factorial $n!$ for a real number $x\in {\mathbb R}$ is the value of Euler's gamma function $Γ(1+x)$. In this connection, the notion of a binomial coefficient naturally arose for admissible values of the real arguments. By elementary means, it is proved a number of properties of binomial coefficients $\binom{r}α$ of real arguments $r,\,α\in {\mathbb R}$ such as analogs of unimodality, symmetry, Pascal's triangle, etc. for classical binomial coefficients. The asymptotic behavior of such generalized binomial coefficients of a special form is established.