论文标题

通过重叠的聚类和D2D通信,用于节能联合学习的分散聚合

Decentralized Aggregation for Energy-Efficient Federated Learning via Overlapped Clustering and D2D Communications

论文作者

Al-Abiad, Mohammed S., Obeed, Mohanad, Hossain, Md. Jahangir, Chaaban, Anas

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Federated learning (FL) has emerged as a distributed machine learning (ML) technique to train models without sharing users' private data. In this paper, we propose a decentralized FL scheme that is called \underline{f}ederated \underline{l}earning \underline{e}mpowered \underline{o}verlapped \underline{c}lustering for \underline{d}ecentralized aggregation (FL-EOCD). The introduced FL-EOCD leverages device-to-device (D2D) communications and overlapped clustering to enable decentralized aggregation, where a cluster is defined as a coverage zone of a typical device. The devices located on the overlapped clusters are called bridge devices (BDs). In the proposed FL-EOCD scheme, a clustering topology is envisioned where clusters are connected through BDs, so as the aggregated models of each cluster is disseminated to the other clusters in a decentralized manner without the need for a global aggregator or an additional hop of transmission. Unlike the star-based FL, the proposed FL-EOCD scheme involves a large number of local devices by reusing the RRBs in different non-adjacent clusters. To evaluate our proposed FL-EOCD scheme as opposed to baseline FL schemes, we consider minimizing the overall energy-consumption of devices while maintaining the convergence rate of FL subject to its time constraint. To this end, a joint optimization problem, considering scheduling the local devices/BDs to the CHs and computation frequency allocation, is formulated, where an iterative solution to this joint problem is devised. Extensive simulations are conducted to verify the effectiveness of the proposed FL-EOCD algorithm over FL conventional schemes in terms of energy consumption, latency, and convergence rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源