论文标题
部分可观测时空混沌系统的无模型预测
Combinatorially minimal Mori dream surfaces of general type
论文作者
论文摘要
在本文中,我们建议一种新的方法,通过他们的Cox环研究最小的一般类型,$ p_g = 0 $,尤其是使用Hausen引入的组合最小的Mori Dream Space的概念。首先,我们研究组合最小的莫里梦表面的一般特性。然后,我们讨论如何将这些想法应用于对通用类型的最小表面的研究,$ p_g = 0 $,这非常重要,但仍然是神秘的对象。在我们的上一篇论文中,我们提供了几个通用类型的莫里梦表面的示例,其中$ p_g = 0 $,并明确计算了它们的有效锥体。在本文中,我们研究了它们的纤维化,明确的组合最小模型,并讨论了组合最小模型的奇异性。我们还表明,$ p_g = 0 $的许多最小一般类型的最小表面来自组合最小的mori梦想表面的最小分辨率。
In this paper, we suggest a new approach to study minimal surfaces of general type with $p_g=0$ via their Cox rings, especially using the notion of combinatorially minimal Mori dream space introduced by Hausen. First, we study general properties of combinatorially minimal Mori dream surfaces. Then we discuss how to apply these ideas to the study of minimal surfaces of general type with $p_g=0$ which are very important but still mysterious objects. In our previous paper, we provided several examples of Mori dream surfaces of general type with $p_g=0$ and computed their effective cones explicitly. In this paper, we study their fibrations, explicit combinatorially minimal models and discuss singularities of the combinatorially minimal models. We also show that many minimal surfaces of general type with $p_g=0$ arise from the minimal resolutions of combinatorially minimal Mori dream surfaces.