论文标题
非热系统的不确定性关系
Uncertainty Relation for Non-Hermitian Systems
论文作者
论文摘要
我们在特殊的内部产品框架内构建了任意有限尺寸PT不变的非热量子系统的不确定性关系。这种结构是由良好的可观察到的,这是一个更一般的运营商。我们表明,在测量这种非热式系统的两个良好可观察物时,量子渔民信息的累积增益比其赫米尔人的同行更好。最低不确定性是在特殊点附近获得此增益的最佳候选人,这支持了智能或同时的非热量子传感器。
We construct uncertainty relation for arbitrary finite dimensional PT invariant non-Hermitian quantum systems within a special inner product framework. This construction is led by good observables which are a more general class of operators. We show that the cumulative gain in the quantum Fisher information when measuring two good observables for such non-Hermitian systems is way better than their Hermitian counterpart. Minimum uncertainty states being the best candidates for this gain near the exceptional point supports the intelligent or simultaneous non-Hermitian quantum sensors.