论文标题

高阶稳定求解器,用于平均navier-stokes方程

A High Order Stabilized Solver for the Volume Averaged Navier-Stokes Equations

论文作者

Geitani, Toni El, Golshan, Shahab, Blais, Bruno

论文摘要

体积平均的Navier-Stokes方程用于在存在固定或移动的固体(例如包装或流化床)的情况下研究流体流动。我们使用这些方程式的两个表单A和B开发了高阶有限元求解器。我们引入了量身定制的稳定技术,以防止锋利梯度区域的振荡,放宽Ladyzhenskaya-Babuska-Brezzi-Brezzi Inf-Sup条件,并增强局部质量保护和配方的稳健性。我们使用粒子质心方法计算空隙分数。使用不同的阻力模型,我们计算固体在流体上施加的阻力。我们实施制造解决方案的方法来验证我们的求解器。我们证明该模型保留了基本有限元离散化的收敛顺序。最后,我们模拟气体通过随机堆积的床,研究压降和质量保护特性以验证我们的模型。

The Volume-Averaged Navier-Stokes equations are used to study fluid flow in the presence of fixed or moving solids such as packed or fluidized beds. We develop a high-order finite element solver using both forms A and B of these equations. We introduce tailored stabilization techniques to prevent oscillations in regions of sharp gradients, to relax the Ladyzhenskaya-Babuska-Brezzi inf-sup condition, and to enhance the local mass conservation and the robustness of the formulation. We calculate the void fraction using the Particle Centroid Method. Using different drag models, we calculate the drag force exerted by the solids on the fluid. We implement the method of manufactured solution to verify our solver. We demonstrate that the model preserves the order of convergence of the underlying finite element discretization. Finally, we simulate gas flow through a randomly packed bed and study the pressure drop and mass conservation properties to validate our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源