论文标题

量子神经网络分类器:教程

Quantum Neural Network Classifiers: A Tutorial

论文作者

Li, Weikang, Lu, Zhide, Deng, Dong-Ling

论文摘要

在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式专注于量子神经网络。我们将主要讨论不同的结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基于其性能,这是用Julia语言编写的量子仿真软件包。这些代码是有效的,旨在为科学工作的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。

Machine learning has achieved dramatic success over the past decade, with applications ranging from face recognition to natural language processing. Meanwhile, rapid progress has been made in the field of quantum computation including developing both powerful quantum algorithms and advanced quantum devices. The interplay between machine learning and quantum physics holds the intriguing potential for bringing practical applications to the modern society. Here, we focus on quantum neural networks in the form of parameterized quantum circuits. We will mainly discuss different structures and encoding strategies of quantum neural networks for supervised learning tasks, and benchmark their performance utilizing Yao.jl, a quantum simulation package written in Julia Language. The codes are efficient, aiming to provide convenience for beginners in scientific works such as developing powerful variational quantum learning models and assisting the corresponding experimental demonstrations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源