论文标题

关于Rellich-Kondrachov定理的表征

On a Characterization of the Rellich-Kondrachov Theorem on Groups

论文作者

Ccajma, Vernny, Neves, Wladimir, Silva, Jean

论文摘要

由ir^nxΩ提出的特征值 - 元素功能问题的促进,其中ω是一个概率空间,我们在本文中与sobolev空间相关。因此,它是在局部紧凑的阿贝尔群体与相关变分问题的解决方案之间的等效性。然后,我们研究一些以精确方式特征的条件Rellich-Kondrachov定理,这是解决变异问题的主要成分。

Motivated by an eigenvalue-eigenfunction problem posed in IR^n x Ω, where Ω is a probability space, we are concerned in this paper with the Sobolev space on groups. Hence it is established an equivalence between locally compact Abelian groups and the space of solutions to the associated variational problem. Then, we study some conditions which characterize in a precisely manner the Rellich-Kondrachov Theorem, the principal ingredient to solve the variational problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源