论文标题

X射线磁载体断层扫描中的铁磁微结构中的拓扑磁偶极子和新兴场束

Topological magnetic dipoles and emergent field bundles in a ferromagnetic microstructure by X-ray magnetic vector tomography

论文作者

Hermosa, Javier, Hierro-Rodriguez, Aurelio, Quirós, Carlos, Martin, José I., Sorrentino, Andrea, Aballe, Lucia, Pereiro, Eva, Vélez, Maria, Ferrer, Salvador

论文摘要

先进的矢量成像技术为我们提供了3D磁化场图,其中可以直接应用拓扑概念来描述非理想几何形状中的真实空间实验纹理。在这里,低对称性薄膜微观结构的3D磁化是通过X射线矢量磁性断层扫描获得的,并根据拓扑电荷和新兴场进行详细分析。观察到具有复杂3D结构的中央不对称域壁,其中磁化手性转变是由布置在几个偶极子和三重序列的Bloch点介导的。由于Permalloy微结构的形状效应,孤立单极的新兴场的理想球形对称性受到了严重修饰。出现的野外线聚集成束,这些束要么连接拓扑偶极子内的相邻BLOCH点,要么倾向于表面。这些束可能会呈现出不同的纹理,例如螺旋涡流或半梅隆,具体取决于不对称和限制,但受到给定样品体积中拓扑电荷保护的约束。通过磁化矢量场的定量实验信息实现了对现实系统中奇点的精确描述,可以显着提高我们对3D磁系统中拓扑约束的理解,并在磁性设备设计方面提供进步。

Advanced vector imaging techniques provide us with 3D maps of magnetization fields in which topological concepts can be directly applied to describe real-space experimental textures in non-ideal geometries. Here, the 3D magnetization of a low symmetry permalloy microstructure is obtained by X-ray vector magnetic tomography and analysed in detail in terms of topological charges and emergent fields. A central asymmetric domain wall with a complex 3D structure is observed in which magnetization chirality transitions are mediated by Bloch points arranged in several dipoles and a triplet. The ideal spherical symmetry of the emergent field of an isolated monopole is severely modified due to shape effects of the permalloy microstructure. Emergent field lines aggregate into bundles that either connect adjacent Bloch points within a topological dipole or tend towards the surface. These bundles may present different textures such as helical vortices or half merons, depending on asymmetries and confinement, but are constrained by topological charge conservation in a given sample volume. This precise description of the singularities in realistic systems, enabled by the quantitative experimental information on magnetization vector fields, can significantly improve our understanding of topological constraints in 3D magnetic systems and provide advancements in the design of magnetic devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源