论文标题

情况理论和渠道理论是不完美信息管理的统一框架

Situation Theory and Channel theory as a Unified Framework for Imperfect Information Management

论文作者

Naderian, Farhad

论文摘要

本文认为,情况理论和渠道理论可以用作不完美信息管理的一般框架。不同种类的不完美是不确定性,不精确,模糊性,不完整,不一致和上下文依赖性,这可以很好地处理我们的大脑。概率理论和标准逻辑之类的基本方法在对谬误的思维建模方面本质上效率低下。普遍的概率和非标准逻辑理论具有认识论动机,可以为认知剂中的信息整合提供更好的模型。在它们的许多模型中,可能性理论和概率逻辑理论是最佳方法。我认为,基于对不完美信息管理方法的不同方法的回顾,一个很好的框架是Barwise的情况理论和Barwise-Seligman的渠道理论。这些理论依靠一个强大而独特的基于认识论的信息概念来指代偏见。这些框架具有适当的方法,用于上下文建模,以处理常识和不完整的信息。同样,他们将信念从知识清楚区分出来,以模拟知识的非单调和动态性质。他们将世界的逻辑与信息流有关。这些理论中的客观化过程向我们揭示了感知中默认或概率规则的性质。通道的概念可用于表示从一个模型或逻辑转移到另一种模型的推理机制。我们的看法中的不确定导致在交流中的推理和模糊性中的模糊性,这可以由某些渠道相关的某些合适的分类来表示。像网络框架这样的新框架可以提供一个可扩展和开放的框架,以基于相对论的真理概念来涵盖不同的模型。

This article argues that the Situation theory and the Channel theory can be used as a general framework for Imperfect Information Management. Different kinds of imperfections are uncertainty, imprecision, vagueness, incompleteness, inconsistency, and context-dependency which can be handled pretty well by our brain. Basic approaches like probability theory and standard logic are intrinsically inefficient in modeling fallacious minds. The generalized probability and nonstandard logic theories have epistemological motivations to provide better models for information integration in cognitive agents. Among many models of them, possibility theory and probabilistic logic theory are the best approaches. I argue, based on a review of different approaches to Imperfect Information Management, that a good framework for it is the Situation theory of Barwise and the Channel theory of Barwise-Seligman. These theories have relied on a powerful and unique epistemological-based notion of information to refer to partiality. These frameworks have a proper approach for context modeling to handle common knowledge and incomplete information. Also, they distinguish belief from knowledge clearly to model the non-monotonic and dynamic nature of knowledge. They discern the logic of the world from information flow in the mind. The objectification process in these theories reveals to us the nature of default or probabilistic rules in perceptions. The concept of the channel can be used to represent those types of reasoning mechanisms that move from one model or logic to another one. The imprecision in our perceptions causes fuzziness in reasoning and vagueness in communication that can be represented by some suitable classifications connected by some channels. This new framework like a network framework can provide a scalable and open framework to cover different models based on a relativistic notion of truth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源