论文标题

采样频率独立对话分离

Sampling Frequency Independent Dialogue Separation

论文作者

Paulus, Jouni, Torcoli, Matteo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In some DNNs for audio source separation, the relevant model parameters are independent of the sampling frequency of the audio used for training. Considering the application of dialogue separation, this is shown for two DNN architectures: a U-Net and a fully-convolutional model. The models are trained with audio sampled at 8 kHz. The learned parameters are transferred to models for processing audio at 48 kHz. The separated audio sources are compared with the ones produced by the same model architectures trained with 48 kHz versions of the same training data. A listening test and computational measures show that there is no significant perceptual difference between the models trained with 8 kHz or with 48 kHz. This transferability of the learned parameters allows for a faster and computationally less costly training. It also enables using training datasets available at a lower sampling frequency than the one needed by the application at hand, or using data collections with multiple sampling frequencies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源