论文标题

从dehn着色矩阵中构建Goeritz矩阵

Constructing Goeritz matrix from Dehn coloring matrix

论文作者

Horiuchi, Masaki, Ichihara, Kazuhiro, Matsudo, Eri, Yoshida, Sota

论文摘要

Goeritz与结图相关联,引入了一个积分矩阵,该基质现在称为Goeritz矩阵。特拉迪(Traldi)表明,用goeritz矩阵的方程式空间(确切地说是在他的纸中称为未还原的goeritz矩阵),因为系数矩阵对结的线性空间是同构的,该线性空间由dehn colorings组成。在本文中,我们从dehn着色矩阵中构造了goeritz矩阵,从中诱导了dehn颜色。此外,如果结图是素数,我们将提供纯代代数结构,从dehn彩色矩阵中goeritz基质。

Associated to a knot diagram, Goeritz introduced an integral matrix, which is now called a Goeritz matrix. It was shown by Traldi that the solution space of the equations with Goeritz matrix (precisely, unreduced Goeritz matrix called in his paper) as a coefficient matrix is isomorphic to the linear space consisting of the Dehn colorings for a knot. In this paper, we give a construction of a Goeritz matrix from a Dehn coloring matrix, from which Dehn colorings are induced. Moreover, if the knot diagram is prime, we give a purely algebraic construction of a Goeritz matrix from a Dehn coloring matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源