论文标题
Phee:一种分阶段的混合评估增强方法,用于识别社交网络中有影响力的用户
PHEE: A phased hybrid evaluation-enhanced approach for identifying influential users in social networks
论文作者
论文摘要
为了最大程度地利用社交网络中的一定数量k节点引起的影响的传播,我们被要求找到具有最佳能力来影响不在其中的节点的节点的k个节点(即种子集)。这种影响最大化的问题(IM)具有广泛的应用,属于子集问题,并且是NP-HARD。为了解决它,我们应该从理论上检查所有种子集并评估其影响差,这很耗时。因此,通常采用元启发式策略在合理的时间内获得良好的种子。我们观察到,IM问题的许多算法仅在整个解决方案搜索过程中采用均匀机制,当算法被困在局部最佳距离中时,该算法缺乏响应度量。为了解决这个问题,我们为IM提出了一种分阶段的混合评估增强(PHEE)方法,该方法利用两种不同的搜索策略来增强对最佳解决方案的搜索:一种随机范围分裂进化(RANDRDE)算法,以提高解决方案质量,并采用快速融合策略。我们的方法对不同大小和类型的10个现实世界社交网络进行了评估。实验结果表明,与三种最先进的算法相比,我们的算法效率很高,并且获得了所有数据集的最佳影响,并且在四个数据集上的耗时CELF算法优于耗时,并且仅在两个网络上的CELF差。
For the purpose of maximizing the spread of influence caused by a certain small number k of nodes in a social network, we are asked to find a k-subset of nodes (i.e., a seed set) with the best capacity to influence the nodes not in it. This problem of influence maximization (IM) has wide application, belongs to subset problems, and is NP-hard. To solve it, we should theoretically examine all seed sets and evaluate their influence spreads, which is time-consuming. Therefore, metaheuristic strategies are generally employed to gain a good seed set within a reasonable time. We observe that many algorithms for the IM problem only adopt a uniform mechanism in the whole solution search process, which lacks a response measure when the algorithm becomes trapped in a local optimum. To address this issue, we propose a phased hybrid evaluation-enhanced (PHEE) approach for IM, which utilizes two distinct search strategies to enhance the search of optimal solutions: a randomized range division evolutionary (RandRDE) algorithm to improve the solution quality, and a fast convergence strategy. Our approach is evaluated on 10 real-world social networks of different sizes and types. Experimental results demonstrate that our algorithm is efficient and obtains the best influence spread for all the datasets compared with three state-of-the-art algorithms, outperforms the time consuming CELF algorithm on four datasets, and performs worse than CELF on only two networks.