论文标题
跨尺度的湍流动能转移在有相干结构的情况下以预混合旋转燃烧
Cross-scale turbulent kinetic energy transfer in the presence of coherent structures in premixed swirl combustion
论文作者
论文摘要
本文通过实验分析了热释放和相干涡流结构对动能在层状厚度$δ^0_ \ mathrm {l} $跨尺度上转移的同时影响。高分辨率层析成像粒子图像速度法和甲醛平面激光诱导的荧光测量用于获得3D速度场和进度变量和密度场的估计。然后使用物理空间分析对$δ=1.5Δ^0_ \ mathrm {l} $的滤光片尺度的动能传递进行了量化。使用旋转强度鉴定了相干的流量结构,并使用正确的正交分解来识别主要的周期性流动结构。尽管流动的非反应区域显示平均下尺度的能量传递(前筛),但在火焰的内部观察到平均后刻表。重要的是,在发生火焰/涡流相互作用的区域中,火焰中的后丝幅度增加。也就是说,在火焰内部同时在位置的平均后筛幅度和大规模连贯的涡旋高于火焰中的区域,而不是涡旋中的区域,而平均后刻表幅度随着旋转强度而增加。这种增加的后筛子可能是由于火焰/涡流相互作用位置的局部释放率较高。总体而言,结果表明了动能在火焰厚度周围的尺度上的反散射以及后散射与局部火焰/流量结构之间的复杂关系的重要性;在火焰中建模湍流时,应考虑这些结果。
This paper experimentally analyzes the simultaneous influence of heat release and coherent vortex structures on the transfer of kinetic energy across scales around the laminar flame thickness $δ^0_\mathrm{L}$ in a turbulent premixed swirl flame and a non-reacting swirl flow. High-resolution tomographic particle image velocimetry and formaldehyde planar laser induced fluorescence measurements are used to obtain 3D velocity fields and estimates of the progress variable and density fields. The kinetic energy transfer across a filter scale of $Δ= 1.5 δ^0_\mathrm{L}$ was then quantified using physical space analysis. Coherent flow structures were identified using the swirling strength and proper orthogonal decomposition was used to identify the dominant periodic flow structure. While non-reacting regions of the flow show mean down-scale energy transfer (forward-scatter), mean back-scatter is observed internal to the flame. Importantly, the back-scatter magnitude in the flame increases in regions undergoing flame/vortex interaction. That is, the mean back-scatter magnitude at locations simultaneously inside the flame and a large-scale coherent vortex is higher than regions in the flame and not in a vortex, with the mean back-scatter magnitude increasing with the swirling strength. This increased back-scatter may be due to locally higher heat release rates in locations of flame/vortex interaction. Overall, the results demonstrate the importance of kinetic energy back-scatter at scales around the flame thickness and the complicated relationship between back-scatter and local flame/flow structure; these results should be considered when modeling turbulence in flames.