论文标题
部分可观测时空混沌系统的无模型预测
A classification of finite primitive IBIS groups with alternating socle
论文作者
论文摘要
令$ g $为$ω$的有限置换组。 $ω$的元素的有序序列$(ω_1,\ ldots,ω_\ ell)$是$ g $的不遗传基础,如果点稳定稳定器微不足道,并且由其前者的稳定器固定。如果$ g $的所有不遗产基础具有相同的基数,则据说$ g $是ibis组。 Lucchini,Morigi和Moscatiello已证明是一个定理,将有限原始IBIS群体$ G $分类为$ G $的Socle是Abelian或非阿比亚简单的情况。 在本文中,我们将有限的原始IBIS群体分类为SOCLE是交替的组。此外,我们提出了一个猜想,旨在对所有几乎简单的原始IBIS组进行分类。
Let $G$ be a finite permutation group on $Ω$. An ordered sequence $(ω_1,\ldots,ω_\ell)$ of elements of $Ω$ is an irredundant base for $G$ if the pointwise stabilizer is trivial and no point is fixed by the stabilizer of its predecessors. If all irredundant bases of $G$ have the same cardinality, $G$ is said to be an IBIS group. Lucchini, Morigi and Moscatiello have proved a theorem reducing the problem of classifying finite primitive IBIS groups $G$ to the case that the socle of $G$ is either abelian or non-abelian simple. In this paper, we classify the finite primitive IBIS groups having socle an alternating group. Moreover, we propose a conjecture aiming to give a classification of all almost simple primitive IBIS groups.