论文标题
共轭连接及其在纯金属度量几何上的应用
Conjugate Connections and their Applications on Pure Metallic Metric Geometries
论文作者
论文摘要
令$ \ left(m,j,g \右)$为金属伪 - 利马尼亚歧管,配备了金属结构$ j $和伪 - riemannian衡量标准$ g $。该论文介绍了由结合连接和张量结构形成的Codazzi耦合的相互作用。 Tachibana操作员和Codazzi耦合的存在为本地金属伪riemannian歧管提供了新的特征。同样,一种不可依赖的金属伪riemannian歧管是准金属伪riemannian歧管。最后,它引入了金属状伪 - riemannian歧管,并给出了有关它们的一些结果。
Let $\left( M,J,g\right) $ be a metallic pseudo-Riemannian manifold equipped with a metallic structure $J$ and a pseudo-Riemannian metric $g$. The paper deals with interactions of Codazzi couplings formed by conjugate connections and tensor structures. The presence of Tachibana operator and Codazzi couplings presented a new characterization for locally metallic pseudo-Riemannian manifold. Also, a necessary and sufficient condition a non-integrable metallic pseudo-Riemannian manifold is a quasi metallic pseudo Riemannian manifold is derived. Finally, it is introduced metallic-like pseudo-Riemannian manifolds and presented some results concerning them.