论文标题

用于测试自动驾驶系统的实时关键群体生成框架

A Real-time Critical-scenario-generation Framework for Testing Autonomous Driving System

论文作者

Xie, Yizhou, Dai, Kunpeng, Zhang, Yong

论文摘要

为了找到可能在某些给定的操作域下发生的最可能发生的故障情况,基于关键的基于scenario的测试被认为是一种有效且广泛使用的方法,该方法为设计师提供了改善开发算法的建议。但是,对于最先进的状态,关键的群体生成方法通常利用随机搜索或强化学习方法来生成一系列特定算法的方案,该算法需要大量的计算资源来测试正在开发目标,该目标一直在变化,并且用于测试实时系统。在本文中,我们提出了一个实时关键群体生成(RTCSG)框架,以应对上述挑战。在我们的框架中,提出了一种积极的驾驶算法来控制虚拟代理工具,提出了专门设计的成本功能,以指导方案以发展到临界条件下,并且设计了一种自适应系数的迭代,以实现在不同条件下成功操作的方法。通过我们提出的方法,可以直接为正在测试的目标系统生成关键筛选器,即黑框系统,可以将实时关键核测试实现。模拟结果表明,与当前方法相比,我们的方法能够在大多数情况下获得更关键的方案,并且成功的稳定性更高。为了进行实时测试,我们的方法提高了效率约16次。

In order to find the most likely failure scenarios which may occur under certain given operation domain, critical-scenario-based test is supposed as an effective and widely used method, which gives suggestions for designers to improve the developing algorithm. However, for the state of art, critical-scenario generation approaches commonly utilize random-search or reinforcement learning methods to generate series of scenarios for a specific algorithm, which takes amounts of computing resource for testing a developing target that is always changing, and inapplicable for testing a real-time system. In this paper, we proposed a real-time critical-scenario-generation (RTCSG) framework to address the above challenges. In our framework, an aggressive-driving algorithm is proposed in controlling the virtual agent vehicles, a specially designed cost function is presented to guide scenarios to evolve towards critical conditions, and a self-adaptive coefficient iteration is designed that enable the approach to operate successfully in different conditions. With our proposed method, the critical-scenarios can be directly generated for the target under test which is a black-box system, and the real-time critical-scenario test can be brought into reality. The simulation results show that our approach is able to obtain more critical scenarios in most conditions than current methods, with a higher stability of success. For a real-time testing, our approach improves the efficiency around 16 times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源