论文标题
部分可观测时空混沌系统的无模型预测
SolarGAN: Synthetic Annual Solar Irradiance Time Series on Urban Building Facades via Deep Generative Networks
论文作者
论文摘要
建筑集成光伏(BIPV)是一项有前途的技术,可以利用在建筑信封上可用的太阳能脱碳化。尽管已经确定了评估太阳辐射的方法,尤其是在屋顶上,但对建筑物的评估通常涉及更高的努力,因为更复杂的城市特征和障碍物。现有基于物理的仿真程序的缺点是,它们需要大量的手动建模工作和计算时间来生成时间解决确定性结果。然而,太阳照射是高度间歇性的,并且设计强大的BIPV能源系统可能需要代表其固有的不确定性。针对这些缺点,本文提出了一个基于深层生成网络(DGN)的数据驱动模型,以有效地生成有关年度小时的太阳辐照度时间序列的高保真随机集合,该集合在建筑物外墙上具有不妥协的时空分辨率。所需的唯一输入是易于获取,简单的鱼眼图像,作为从3D型号捕获的分类阴影面具。原则上,鉴于它们是语义上的细分,也可以利用城市环境的实际照片。与基于物理的模拟器相比,我们的验证体现了生成时间序列的高保真度。为了证明该模型与城市能源计划的相关性,我们通过参数改变城市环境的特征并在不同气候环境下实时地展示了其产生生成设计的潜力。
Building Integrated Photovoltaics (BIPV) is a promising technology to decarbonize urban energy systems via harnessing solar energy available on building envelopes. While methods to assess solar irradiation, especially on rooftops, are well established, the assessment on building facades usually involves a higher effort due to more complex urban features and obstructions. The drawback of existing physics-based simulation programs is that they require significant manual modelling effort and computing time for generating time resolved deterministic results. Yet, solar irradiation is highly intermittent and representing its inherent uncertainty may be required for designing robust BIPV energy systems. Targeting on these drawbacks, this paper proposes a data-driven model based on Deep Generative Networks (DGN) to efficiently generate high-fidelity stochastic ensembles of annual hourly solar irradiance time series on building facades with uncompromised spatiotemporal resolution at the urban scale. The only input required is easily obtainable, simple fisheye images as categorical shading masks captured from 3D models. In principle, even actual photographs of urban contexts can be utilized, given they are semantically segmented. Our validations exemplify the high fidelity of the generated time series when compared to the physics-based simulator. To demonstrate the model's relevance for urban energy planning, we showcase its potential for generative design by parametrically altering characteristic features of the urban environment and producing corresponding time series on building facades under different climatic contexts in real-time.