论文标题

JT重力中基态能量的分布

The Distribution of Ground State Energies in JT Gravity

论文作者

Johnson, Clifford V.

论文摘要

结果表明,Jackiw-teitelboim重力的量子完成的最低能量特征值的分布完全由非线性普通微分方程(ODE)完全描述,该方程是由特殊随机的Hermitian矩阵模型的非扰动处理引起的。它的解决方案匹配最近通过使用正交方法计算弗雷德尔姆决定因素获得的结果。新的ODE方法允许提取渐近行为的分析表达式。结果与高斯随机遗传学矩阵的最低特征值的众所周知的tracy-widom分布高度相似,后者出现在非常多样化的物理和数学环境集中。同样,预计新分布会表征一种可以在各种重力设置中出现的通用性,包括各个维度的黑洞物理,甚至超越。它与特殊的多政治概括有关总 - 核 - 瓦迪亚相变的关联。

It is shown that the distribution of the lowest energy eigenvalue of the quantum completions of Jackiw-Teitelboim gravity is completely described by a non-linear ordinary differential equation (ODE) arising from a non-perturbative treatment of a special random Hermitian matrix model. Its solution matches the result recently obtained by computing a Fredholm determinant using quadrature methods. The new ODE approach allows for analytical expressions for the asymptotic behaviour to be extracted. The results are highly analogous to the well-known Tracy-Widom distribution for the lowest eigenvalue of Gaussian random Hermitian matrices, which appears in a very diverse set of physical and mathematical contexts. Similarly, it is expected that the new distribution characterizes a type of universality that can arise in various gravity settings, including black hole physics in various dimensions, and perhaps beyond. It has an association to a special multicritical generalization of the Gross-Witten-Wadia phase transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源