论文标题

机器人计划问题中帕累托前沿的错误近似

Error-Bounded Approximation of Pareto Fronts in Robot Planning Problems

论文作者

Botros, Alexander, Sadeghi, Armin, Wilde, Nils, Alonso-Mora, Javier, Smith, Stephen L.

论文摘要

机器人技术中的许多问题试图同时优化限制下的几个相互竞争的目标。解决此类多目标优化问题的常规方法是创建一个由单个目标的加权总和组成的单个成本函数。这个标量优化问题的解决方案是帕累托的原始多目标问题的最佳解决方案。但是,找到帕累托阵线的准确表示仍然是一个重要的挑战。使用均匀的间隔矢量通常效率低下,并且不提供误差范围。因此,我们解决了计算有限的权重向量集的问题,以便对于任何其他重量向量,都存在集合中的一个元素,该元素与最佳相比的误差被最小化。为此,我们证明了最佳成本的基本属性是权重矢量的函数,包括其连续性和凹陷。使用这些,我们提出了一种贪婪的算法,该算法贪婪地添加了当前集合所代表的权重矢量最小代表,并提供了误差的界限。最后,我们说明所提出的方法在不同的机器人计划问题上,具有不同数量的目标函数的均匀分布的权重。

Many problems in robotics seek to simultaneously optimize several competing objectives under constraints. A conventional approach to solving such multi-objective optimization problems is to create a single cost function comprised of the weighted sum of the individual objectives. Solutions to this scalarized optimization problem are Pareto optimal solutions to the original multi-objective problem. However, finding an accurate representation of a Pareto front remains an important challenge. Using uniformly spaced weight vectors is often inefficient and does not provide error bounds. Thus, we address the problem of computing a finite set of weight vectors such that for any other weight vector, there exists an element in the set whose error compared to optimal is minimized. To this end, we prove fundamental properties of the optimal cost as a function of the weight vector, including its continuity and concavity. Using these, we propose an algorithm that greedily adds the weight vector least-represented by the current set, and provide bounds on the error. Finally, we illustrate that the proposed approach significantly outperforms uniformly distributed weights for different robot planning problems with varying numbers of objective functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源