论文标题
使用最佳运动适应和交互控制
Collaborative Bimanual Manipulation Using Optimal Motion Adaptation and Interaction Control
论文作者
论文摘要
这项工作为可靠且安全的人类机器人协作开发了合作的双人操作,这使远程和本地的人类运营商可以在双人式任务上进行交互工作。我们提出了一种最佳的运动改编,以从多个人类操作员重新定义任意命令为可行的控制参考。协作操作框架具有三个主要模块:(1)通过入学控制与对象进行合规的物理互动的接触力调制; (2)任务空间顺序平衡和逆运动学优化,通过满足机器人的任务约束和物理限制,将交互式命令从多个运算符调整为可行的运动; (3)由分形阻抗控制采用的交互控制器,该控制器对时间延迟非常稳定,并且可以稳定地叠加多个控制工作,以产生所需的关节扭矩并控制双臂机器人。广泛的实验证明了协作双人框架的能力,包括(1)双臂远程操作,这些双臂进行了调整任意不可行的命令,这些命令将违反联合扭矩限制限制为安全边界内的连续操作,与没有建议的优化的故障相比; (2)在存在模型不准确的情况下,通过物理相互作用对物体进行了强大的操纵; (3)协作多手术零件组件和远程功能工业连接器插入,这些插入器验证了可靠的人类机器人共同操作的保证稳定性。
This work developed collaborative bimanual manipulation for reliable and safe human-robot collaboration, which allows remote and local human operators to work interactively for bimanual tasks. We proposed an optimal motion adaptation to retarget arbitrary commands from multiple human operators into feasible control references. The collaborative manipulation framework has three main modules: (1) contact force modulation for compliant physical interactions with objects via admittance control; (2) task-space sequential equilibrium and inverse kinematics optimization, which adapts interactive commands from multiple operators to feasible motions by satisfying the task constraints and physical limits of the robots; and (3) an interaction controller adopted from the fractal impedance control, which is robust to time delay and stable to superimpose multiple control efforts for generating desired joint torques and controlling the dual-arm robots. Extensive experiments demonstrated the capability of the collaborative bimanual framework, including (1) dual-arm teleoperation that adapts arbitrary infeasible commands that violate joint torque limits into continuous operations within safe boundaries, compared to failures without the proposed optimization; (2) robust maneuver of a stack of objects via physical interactions in presence of model inaccuracy; (3) collaborative multi-operator part assembly, and teleoperated industrial connector insertion, which validate the guaranteed stability of reliable human-robot co-manipulation.