论文标题

科学发现中深度学习不透明度

Deep Learning Opacity in Scientific Discovery

论文作者

Duede, Eamon

论文摘要

哲学家最近专注于批判性的认识论挑战,这些挑战是由深神经网络的不透明性引起的。从这本文献中可以得出的结论是,使用不透明模型进行良好的科学是极具挑战性的,即使不是不可能的。然而,这很难与最近对科学的AI乐观情绪的繁荣以及最近受AI方法驱动的一系列科学突破的泛滥。在本文中,我认为哲学悲观和科学乐观主义之间的脱节是由于未能研究AI实际在科学中的使用而驱动的。我表明,为了理解AI驱动的突破的认知理由,哲学家必须研究深度学习的作用,这是一个更广泛的发现过程的一部分。在这方面,“发现背景”与“理由背景”之间的哲学区别在这方面有所帮助。我证明了参与从科学文献中提取的两个案例进行这种区别的重要性,并表明认知不透明度无需降低AI的能力,使AI引导科学家取得了重大且合理的突破。

Philosophers have recently focused on critical, epistemological challenges that arise from the opacity of deep neural networks. One might conclude from this literature that doing good science with opaque models is exceptionally challenging, if not impossible. Yet, this is hard to square with the recent boom in optimism for AI in science alongside a flood of recent scientific breakthroughs driven by AI methods. In this paper, I argue that the disconnect between philosophical pessimism and scientific optimism is driven by a failure to examine how AI is actually used in science. I show that, in order to understand the epistemic justification for AI-powered breakthroughs, philosophers must examine the role played by deep learning as part of a wider process of discovery. The philosophical distinction between the 'context of discovery' and the 'context of justification' is helpful in this regard. I demonstrate the importance of attending to this distinction with two cases drawn from the scientific literature, and show that epistemic opacity need not diminish AI's capacity to lead scientists to significant and justifiable breakthroughs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源