论文标题
PANOPTICDEPTH:一个深度感知的全景分段的统一框架
PanopticDepth: A Unified Framework for Depth-aware Panoptic Segmentation
论文作者
论文摘要
本文介绍了深度感知的全景分割(DPS)的统一框架,该框架旨在通过一个单个图像从实例级语义上重建3D场景。先前的工作通过简单地将密集的深度回归头添加到泛型分割(PS)网络,从而解决此问题,从而产生两个独立的任务分支。这忽略了这两个任务之间的互惠关系,因此未能利用方便的实例级别的语义提示来提高深度准确性,同时也产生了亚最佳深度图。为了克服这些局限性,我们通过将动态卷积技术应用于PS和深度预测任务,为DPS任务提出了一个统一的框架。具体而言,我们不是一次预测所有像素的深度,而是生成实例特定的内核,以预测每个实例的深度和分割掩码。此外,利用实例深度估计方案,我们添加了其他实例级深度线索,以帮助通过新的深度损失来监督深度学习。关于CityScapes-DPS和Semkitti-DPS的广泛实验显示了我们方法的有效性和希望。我们希望我们对DPS的统一解决方案可以在该领域领导新的范式。代码可从https://github.com/naiyugao/panopticdepth获得。
This paper presents a unified framework for depth-aware panoptic segmentation (DPS), which aims to reconstruct 3D scene with instance-level semantics from one single image. Prior works address this problem by simply adding a dense depth regression head to panoptic segmentation (PS) networks, resulting in two independent task branches. This neglects the mutually-beneficial relations between these two tasks, thus failing to exploit handy instance-level semantic cues to boost depth accuracy while also producing sub-optimal depth maps. To overcome these limitations, we propose a unified framework for the DPS task by applying a dynamic convolution technique to both the PS and depth prediction tasks. Specifically, instead of predicting depth for all pixels at a time, we generate instance-specific kernels to predict depth and segmentation masks for each instance. Moreover, leveraging the instance-wise depth estimation scheme, we add additional instance-level depth cues to assist with supervising the depth learning via a new depth loss. Extensive experiments on Cityscapes-DPS and SemKITTI-DPS show the effectiveness and promise of our method. We hope our unified solution to DPS can lead a new paradigm in this area. Code is available at https://github.com/NaiyuGao/PanopticDepth.