论文标题
网络切片要求定义的VR流量的时间表征
Temporal Characterization of VR Traffic for Network Slicing Requirement Definition
论文作者
论文摘要
在过去的几年中,由于其广泛的工业和商业应用,VR的概念引起了人们的兴趣。当前,虚拟场景的3D模型通常存储在VR遮阳板本身中,该模型作为独立设备运行。但是,需要多方交互的应用程序可能需要外部服务器处理场景,然后将其流向遮阳板。但是,VR的交互性质施加的严格服务质量(QOS)的约束需要网络切片(NS)解决方案,为此,对VR应用程序产生的流量进行了分析至关重要。为此,我们在实际设置中收集了超过4个小时的痕迹,并分析了它们的时间相关性。更具体地说,我们专注于CBR编码模式,该模式应该生成更可预测的流量流。从收集的数据中,我们将两个预测模型提炼为未来帧大小,这可以在动态资源分配算法的设计中发挥作用。我们的结果表明,即使是最先进的H.264 CBR模式也可能会产生明显的波动,这可能会影响NS优化。然后,我们利用了所提出的模型,以在NS方案中动态确定服务级别协议(SLA)参数,从而提供所需QoS的服务,同时最大程度地减少资源使用情况。
Over the past few years, the concept of VR has attracted increasing interest thanks to its extensive industrial and commercial applications. Currently, the 3D models of the virtual scenes are generally stored in the VR visor itself, which operates as a standalone device. However, applications that entail multi-party interactions will likely require the scene to be processed by an external server and then streamed to the visors. However, the stringent Quality of Service (QoS) constraints imposed by VR's interactive nature require Network Slicing (NS) solutions, for which profiling the traffic generated by the VR application is crucial. To this end, we collected more than 4 hours of traces in a real setup and analyzed their temporal correlation. More specifically, we focused on the CBR encoding mode, which should generate more predictable traffic streams. From the collected data, we then distilled two prediction models for future frame size, which can be instrumental in the design of dynamic resource allocation algorithms. Our results show that even the state-of-the-art H.264 CBR mode can have significant fluctuations, which can impact the NS optimization. We then exploited the proposed models to dynamically determine the Service Level Agreement (SLA) parameters in an NS scenario, providing service with the required QoS while minimizing resource usage.