论文标题
卫星星座中的联合学习
Federated Learning in Satellite Constellations
论文作者
论文摘要
Federated学习(FL)最近成为具有有限和间歇连通性的系统的分布式机器学习范式。本文介绍了卫星星座给FL带来的新上下文,其中连通性模式与在常规陆地FL中观察到的连通性模式显着不同。重点是低地球轨道(LEO)的大星座,每个卫星都使用本地存储的数据集参与数据驱动的FL任务。这种情况是由狮子座中相互联系的小卫星的大型星座以及卫星中人工智能整合的趋势所激发的。我们根据卫星的通信功能,星座设计和参数服务器的位置提出了卫星FL的分类。提供了该领域当前最新技术的全面概述,并讨论了卫星FL的独特挑战和机遇。最后,我们概述了卫星星座中FL的几个开放研究方向,并就此主题介绍了一些未来的观点。
Federated learning (FL) has recently emerged as a distributed machine learning paradigm for systems with limited and intermittent connectivity. This paper presents the new context brought to FL by satellite constellations, where the connectivity patterns are significantly different from the ones observed in conventional terrestrial FL. The focus is on large constellations in low Earth orbit (LEO), where each satellites participates in a data-driven FL task using a locally stored dataset. This scenario is motivated by the trend towards mega constellations of interconnected small satellites in LEO and the integration of artificial intelligence in satellites. We propose a classification of satellite FL based on the communication capabilities of the satellites, the constellation design, and the location of the parameter server. A comprehensive overview of the current state-of-the-art in this field is provided and the unique challenges and opportunities of satellite FL are discussed. Finally, we outline several open research directions for FL in satellite constellations and present some future perspectives on this topic.