论文标题
部分可观测时空混沌系统的无模型预测
On the Perils of Cascading Robust Classifiers
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Ensembling certifiably robust neural networks is a promising approach for improving the \emph{certified robust accuracy} of neural models. Black-box ensembles that assume only query-access to the constituent models (and their robustness certifiers) during prediction are particularly attractive due to their modular structure. Cascading ensembles are a popular instance of black-box ensembles that appear to improve certified robust accuracies in practice. However, we show that the robustness certifier used by a cascading ensemble is unsound. That is, when a cascading ensemble is certified as locally robust at an input $x$ (with respect to $ε$), there can be inputs $x'$ in the $ε$-ball centered at $x$, such that the cascade's prediction at $x'$ is different from $x$ and thus the ensemble is not locally robust. Our theoretical findings are accompanied by empirical results that further demonstrate this unsoundness. We present \emph{cascade attack} (CasA), an adversarial attack against cascading ensembles, and show that: (1) there exists an adversarial input for up to 88\% of the samples where the ensemble claims to be certifiably robust and accurate; and (2) the accuracy of a cascading ensemble under our attack is as low as 11\% when it claims to be certifiably robust and accurate on 97\% of the test set. Our work reveals a critical pitfall of cascading certifiably robust models by showing that the seemingly beneficial strategy of cascading can actually hurt the robustness of the resulting ensemble. Our code is available at \url{https://github.com/TristaChi/ensembleKW}.