论文标题
关于双曲线空间中的渐近高原问题
On the asymptotic Plateau problem in hyperbolic space
论文作者
论文摘要
在本文中,我们解决了双曲线空间中的渐近高原问题,用于常量$σ_{n-1} $曲率,即,在$ \ mathbb {h}^{n+1} $中存在一个完整的高表情,使$σ_{n+1} $满足$σ_{n-1}(n-1}(κ)= 0,n)关键成分是曲率估计值。以前,这仅以$σ_0<σ<n $而闻名,其中$σ_0$是一个正常数。
In this paper, we solve the asymptotic Plateau problem in hyperbolic space for constant $σ_{n-1}$ curvature, i.e. the existence of a complete hypersurface in $\mathbb{H}^{n+1}$ satisfying $σ_{n-1}(κ)=σ\in (0,n)$ with a prescribed asymptotic boundary $Γ$. The key ingredient is the curvature estimates. Previously, this is only known for $σ_0<σ<n$, where $σ_0$ is a positive constant.